
Persistent Inventory on distributed VR systems: A possible

Solution

Boroondas Gupte (Second Life Resident)

September 9, 2007

Allthough this might look like a scientific docu-
ment, it isn’t. I just took my post1 on sldev-misc
and thew some LATEX at it.

Contents

1 Assumptions 1
1.1 SIMs 1
1.2 Not-so-distributed data storage . . . 1

1.2.1 No Peer-to-peer 1

2 My Solution 2
2.1 Asset hosting 2
2.2 Access to the user’s asset repository 2

2.2.1 Limiting the access 2

3 Protecting intelectual property—or
not 3
3.1 Licenses and other meta data 3
3.2 How to protect your content 3
3.3 Legal issues 3

3.3.1 Some more meta data 3

4 Save saving 3
4.1 Temporal writing 4

1 Assumptions

1.1 SIMs

Let’s assume an online VR solution where different
parts of the world(s) are being simulated by differ-
ent servers (let’s call them SIMs, for some reason
;-)). Whether these SIMs are connected side by
side to populate a map or are only interconnected

1http://lists.daleglass.net/pipermail/sldev-misc-
daleglass.net/2007-September/000004.html

by portals (or not interconnected at all!) isn’t rel-
evant here. Nor is if they are on a common grid
(whatever that might be, anyway). Just assume
they’re being run by different people of which users
might trust some fully, some partly and some not
at all.

1.2 Not-so-distributed data storage

What we want is that, from wherever a user logs
into whichever SIM using the same account, he
should have the same assets at hand. (Assets be-
ing what they are on SL, and perhaps even more)
We can’t put them on single SIMs, because they
might not be persistent themselves, as well as not
fully trusted. Also, those running a SIM probably
wouldn’t like to have to pay on bandwidth just to
deliver content to others’ SIMs.

We also can’t put them on the users computer,
because the user will want to have access to them
when he logs in from other locations and because
some of his assets might be required by other users
while he isn’t even logged in. (You see that I as-
sume that every asset has a clear owner. Although
I’ll come to some permission management later on,
this won’t be anything like permissions in SL, as
the owner will always have full permissions on his
assets.)

1.2.1 No Peer-to-peer

We (well I, at least) also don’t want to rely on the
users seeding their assets to some (custom or al-
ready existing) P2P thingy, so they can later have
access to them from other machines, as well as al-
lowing others access while they’re not online. Apart
from just too much things that can go wrong here,
the bandwidth needs for this might be too much,

1

if you want to run the VR-Simulation at the same
time.

2 My Solution

2.1 Asset hosting

So let’s put them on a separate asset server. Of
course, this asset server could be one of a central
authority, like it is in SL. But I think we shouldn’t
require that:

• Asset servers could run

– on the machines of commercial Asset
Hosters

– on some SIMs

– on the same machine the user’s client runs
on 2

– on the user’s or one of his friends’
own/dedicated server (if any)

and different users might choose different solu-
tions, fitting both their needs and what they’re
willing to pay.

• If there are several competitors for Asset Host-
ing, this might improve quality, as users will
choose those with low (or no) inventory loss,
low response time and high bandwidth, low
prices and much per-account disk space.

Like with email providers, there might be people
who get their asset account as part of a package
with some different product, like from the hoster of
a SIM or from their ISP, or even from their email
provider maybe. Few(?) others would choose to
run their own asset servers, like today some people
run their own email servers.

2.2 Access to the user’s asset repos-
itory

Now, how could all that work technically? The user
would have full read and write access to their asset
account via their client (after some authentication,
of course). So if a user rezzes something on a SIM,

2this would require to either always be connected to the
internet or to not to have any assets you want others to grant
access to while you’re not

the SIM could request the something from the client
who, in turn requests it from the user’s asset server,
just to then pass it on to the SIM for public display
to other users there.

As the users bandwidth might be more limited
than the asset server one’s, this is rather subopti-
mal. So let’s give the SIM read access to the asset
account. The client would tell the SIM which asset
server to use for the user, either as part of the login
data when joining the SIM, or when something’s to
be rezzed. On rezzing, the SIM would then request
the required data from the user’s asset server and
display the item.

2.2.1 Limiting the access

Earlier on I mentioned not all of the SIMs might
be equally trusted by the user. So the SIM should
only be able to request data it needs to get, and no
more. There would be three states for every asset:

• public

• active

• private

public These assets could be requested without
authentication by anyone and anything, be it a
SIM, another user or something else. This state
would have to be set manually by the user via his
client, which would then tell the asset server, which
assets to put in this state. The assets would stay
in this state until manually set non-public.

When writing a script referencing assets, the
scripter would want to set the referenced assets
public, so everyone running the script would have
access to them.

active Non-public assets that are to be displayed
inworld would be in the active state. This state
could automatically be set by the client. Avatar
data, including clothing and attachments would
be active while the user is online and using them.
When the user changes hit outfit, some assets would
get private while others get active. Items rezzed
inworld would stay active until being unrezzed. So
they’d sometimes stay active even while the user’s
not online.

Other than the public state, the active state
would be maintained by the asset server not only

2

per asset but also per SIM. So the SIM would have
to authenticate to the asset server to request those
assets. Apart from SIMs, some assets could also be
active to other users (and their clients), for example
while you transfer something to someone else.

private Everything not public or active would be
private. Only the user’s client would have access to
them. This would include about everything that
isn’t currently in use on a SIM or by another user
and that the owner didn’t decide to make public.
Script sources will always be private unless set pub-
lic or active by the user. Script binaries, which will
be required to be active or public to run, would be
different assets.

3 Protecting intelectual
property—or not

3.1 Licenses and other meta data

Whoever has access to an asset can do whatever
they wish with the copy the retrieved. This doesn’t
mean that they also may do so. So let’s add some
meta data to all assets. Apart from the assets
name, date of creation, creator and owner, which
would only have informational purpose, there could
be a machine readable usage license for the asset.
It could say (when translated to human readable
form) something like “This texture might only be
referenced by scripts owned by user XYZ” or “This
texture might only be referenced by scripts cre-
ated by user XYZ”. Off course one could also think
of “This script source is governed by GPL v2” or
“This prim is public domain, all rites reversed” and
the like.

SIM and client implementations could then help
the users and those running SIMs to keep to such li-
censes, but would not technically enforce it. (DRM
doesn’t work for free software, does it?)

3.2 How to protect your content

Some simple (and probably obvious) rules follow
for users who’d like to protect their content:

• Don’t set anything public if you don’t trust
everyone to comply with your license on it.

• Don’t wear or rez items on SIMs where you
don’t trust the SIM owner and (to some ex-
tend) the other users on the SIM to comply
with your license on those items.

• Don’t transfer anything to anyone who you
don’t trust to comply with your license.

Except of course, you don’t mind them (or some of
them) to disregard your license.

3.3 Legal issues

Of course, if someone disregards your license and
thereby brakes applicable copyright law (which
might not always be the case), you could take le-
gal action against them, like you can when someone
grabs the pictures from your website and uses them
on their own without permission.

3.3.1 Some more meta data

Technically, owners of assets, as well as everyone
else who can get hold of them, can change their
meta data including the license before passing them
on. If they also may do so (now from the legal point
of view), depends on the license, of course. Creators
could digitally sign their works, including the meta
data, so users can be sure the license attached is
unaltered. Digital watermarks might help to prove
who is the original creator of something.

However this would mostly help the ones using
the item, as they’ll be able to prove the licensor put
the asset under a specific license if he insists not to
have done, later. Nothing would hinder anyone in
hold of the asset to remove or replace the license
data, together with the original signature.

4 Save saving

Now, how to save something inworld back to the
inventory, either by its owner or by anyone else if
the license allows (or is disregarded ;-))? In the
setup where only the owner’s client has write access
to the account’s asset repository, the client would
have to request a copy of those parts of the inworld
asset it hasn’t cached locally (e.g. from viewing
them). Then the client could upload them to the
asset server.

3

Considering that writes (saving changed assets)
will be much less frequent than reads, we could as
well stay with that. But we can do better. It should
be save to assume that the client’s upstream band-
width is the bottleneck: people running SIMs will
want to make sure they have enough bandwidth for
doing so, as well will those running asset servers.
The client might have an asymmetric internet con-
nection with much higher downstream data rates
than upstream. This is the case e.g. on ADSL
connections as well as most satellite ones.

4.1 Temporal writing

So let’s allow the SIM to do temporal writes on the
asset repository that are just being canceled if not
approved within some given time.

Then, whenever the client request saving some-
thing, the SIM would send the required data to
both, the client and the asset server. Which data
is required might be different for the client and the
asset server, depending on what data they already
have. The sent data and the data they already have
would than be combined and hashed by both, the
client and the asset server. The client would re-
quest the asset server to either deny or allow the
write, identified by the hash. If the hashes match,
the asset server would make the write permanent
(in case of ‘allow’) or withdraw it (in case of ‘deny’).
If they don’t match, the temporal write would stay
temporal until it times out, and the client would be
informed about that by the asset server.

Of course the client (and its user) can’t rely on
an arbitrary SIM to allow him to save even his own
things, but as there won’t be anything like no-copy
assets, this shouldn’t be a too big problem.

4

	Assumptions
	SIMs
	Not-so-distributed data storage
	No Peer-to-peer

	My Solution
	Asset hosting
	Access to the user's asset repository
	Limiting the access

	Protecting intelectual property---or not
	Licenses and other meta data
	How to protect your content
	Legal issues
	Some more meta data

	Save saving
	Temporal writing

